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FORMULATION OF A DIAGNOSIS PROBLEM FOR A 

THERMOELASTIC MEDIUM 

V. A. Lomazov and Yu. V. Nemirovskii UDC 539.3 

By diagnosis problem we understand the determination of the characteristics of a medium 
from information obtained from a certain number of tests (test studies). Similar formulations 
are widely used in geophysics, particularly in seismic surveying. The general methods avail- 
able have been discussed in [i]. Typical applications of these formulations and methods in 
diagnosis as regards the mechanics of deformable solids are related to the identification of 
unsatisfactory items, determining wear during use, and researching the effects of external 
factors on the properties of materials. 

Here we deal with the determination of small changes in the thermoelastic characteristics 
of a material whose original properties are known. This can be interpreted as refining the 
properties of the material. In fact, when an item is manufactured, the material is subject 
to external factors arising from the production technology, which in general alter its proper- 
ties. A method is proposed for determining the new thermoelastic characteristics on the 
assumption that these remain close to those of the medium that was originally homogeneous and 
isotropic. We consider an example of using this method. 

i. The propagation of thermoelastic waves in an inhomogeneous anisotropic medium is 
described [2] by the following equations: 

Oai = (C~jhl uh,z),j -- (l~j6))d; 

c ~  - ( g ~ j o , ~ ) , j  = O, 

( 1 . 1 )  

(1.2) 

where p is density, @ is relative temperature, u ~= (ul, u2, u3) is the displacement vector, 
Bij = Cijklekl; ~kl are the thermal-expansion coefficient Cijk~ are the isothermal rigidity 

coefficients, and Kij are the thermal conductivities. All of these quantities are functions 
of the spatial variables x~=(xl, x2, x3), u ~ u(x, t), ~ = @(x, t). 

We denote by po, C;jkl' B~ coe' K~j the quantities characterizing the thermoelastic 

properties of a homogeneous isotropic medium. In that case, these quantities are constants, 

o D ~ K? and the tensors Cijkl , ij' ~j have a specific (simpler) form [2]. 

In what follows we assume that the medium is weakly inhomogeneous and weakly anisotropic, 

i.e., the quantities [p--p~ IC~--C~I, IC~j~z--C~MI, l~ij--~~ I '0 ,IK..--K~ I~ ,j have identical small orders 
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O(e) e << i, whereas the quantities pO, C ~ o B ~ K? ' E' Cijkl' ij' zj are of order 0(i). The concept 

o~ a slightly inhomogeneous slightly anisotropic medium is natural, since many natural and 
artificial materials are close in properties to homogeneous and isotropic ones. On the 
other hand, there may be minor changes in properties in a material initially homogeneous and 
isotropic produced by quite weak external factors, such as irradiation, and these may lead 
to substantial changes in behavior. In that case, the diagnostic problem can be treated on 
the above basis as research on the changes in properties produced by the external factors, 
and also on determining the character and intensity of those factors from the changes in 
properties, with the specimen acting as an indicator. 

O O We denote by ui(x, t), ~ (x, t) the solution to the equations 

po'•o_•o , o  o o i , j , k , l = i , - ' 3 ;  ( 1 . 3 )  
i - -  ~jm. - ,%0 -- ~i~8,j , 

Co&o Ko (~o _ O. ( 1 . 4 )  
8~ - -  --ij--,ij  - -  

In what follows we assume that the functions u~ ui(x , t) -- o t), 8e = ui(x , : @(x, t) -- 8 ~  

t )  and t h e i r  f i r s t  and s e c o n d  d e r i v a t i v e s  w i t h  r e s p e c t  t o  x i ,  i = 1,  3 a r e  o f  o r d e r  o f  s m a l l -  
n e s s  O ( e ) ,  e << 1. He re  i t  i s  assumed t h a t  u i ( x  , t ) ,  e ( x ,  t )  and u ~ ( x ,  t ) ,  e ~  t )  s a t i s f y  

t h e  same i n i t i a l  and b o u n d a r y  c o n d i t i o n s  c o r r e s p o n d i n g l y .  In  t h a t  c a s e  we n e g l e c t  t e r m s  o f  
o r d e r  0 (e  2) and t a k e  t h e  f u n c t i o n s  u i ( x  , t ) ,  e ( x ,  t )  a s  bounded  t o g e t h e r  w i t h  t h e i r  p a r t i a l  
d e r i v a t i v e s  w i t h  r e s p e c t  t o  x i and t up t o  t h e  s e c o n d  o r d e r  i n c l u s i v e ,  and t h e n  ( 1 . 1 )  and 
( 1 . 2 )  on t h e  b a s i s  o f  ( 1 . 3 )  and ( 1 . 4 )  r e d u c e  t o  

0"8  eqO ~8 ]_ ,RO ~8 __ 
P ui -- ~Oh~ h.lj T Vlj~,j -- fi; 

c06,_ 0 ,_ Kij@,i j - -  g, where 

8" 0 8 0 8 O �9 
/, = - p u, + 0 J -  

e" o K e o pe e o e _ o g- - '= - -CeO Jr( ijO,i), .~'  = / ~ - - 0  O, ~ i j k l : ~ i j k l - - C i j k l  , ~ i j - -~ i j - -~ i j '  

C ~ - -  o ~ = " K ~ i , j , k , I = t , 3  -- C e-C~, Ki~ I{ij-- ijl 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

We use these equations to solve the dSagnostic problem for a slightly inhomogeneous 
slightly anisotropic thermoelastic medium. The problem is treated as follows. 

Let equations (I.I) and (1.2) apply in the region ~<x~, x~<=, 0 ~z3<~,t0~t~= ; 
we consider m different boundary-value problems for these equations. The solution to 
boundary value n is denoted by u(~), @(n). Let this correspond to the initial conditions 

u~ n) (x,  t0) = ~ " ) ( x ) ,  n = l , m ,  i =  I']-3; ( 1 . 9 )  

;~ (x, %) : o; ( l .  i o )  

8(.) (x, to) = ,~(n)(x) (i o ii) 

and the boundary conditions 

~--- u (n) t) = 0; ax3 i (z 1, z,,, 0, ( 1 . 1 2 )  

# 
~ e(n) (Xl, x2, O, 0 -- O. ( 1 . 1 3 )  

Because of the symmetry, the Cijkl(X) tensor contains 21 independent components, while 

the tensor ~ij(x) contains six, and the tensor Kij(x) also six [2]. Then the task in the 
general case consists in determining 33 functions of the spatial variables by reference to 
additional information derived from the tests. 
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We assume that we have some information on the solution to the m boundary-value problems 
which takes the form 

div u (') ( , j ,  ~ /0 ,  0 Z~ '') (/.t' ~z, t); ( 1 . 1 4 )  

rot u ( ')  ( 'h '  'r2' 0, t) := 2~ n) (x x, x,,, t); ( 1 . 1 5 )  

~ (h '  ~o' o, t) ,,~") 0 '  = =/'3 (x~t' x2' ( 1 . 1 6 )  
( 4  + 4 )  < , ,  , >  o, : 

We note that it follows directly from (i.15) that the vector function 2!")- = ( X ( ~ '  X(n),22 X~)) 
~n)  

c a n n o t  b e  a r b i t r a r y .  T h e  c o n d i t i o n  d i v  • = 0 s h o u l d  b e  o b e y e d  b y  t h i s .  

Ci Ki j (n) 0 o (n) We assume also that pO o 6o o C ~ are known, and therefore u? , may 
' jkl' ij' ' s I 

also be considered as known, as these satisfy the thermoelastic equations containing these 
coefficients and the initial andl,boundary conditions coincident with (1.9)-(1.13). Then the 
task in fact amounts to determining C~jkl , ~., K~ 

1 ]  l j "  

2. We now examine this task. We have shown above that (I.i) and (1.2) reduce to (1.5)- 
(1.8) on the basis of the above assumptions. We first determine the right sides f(~), g(n) 

in the equations of the form of (1.5) and (1.6) corresponding to test n, i.e., boundary- 
value problem n with the initial and boundary conditions of (1.9)-(1.13). We apply the div 
and rot operators to these equations to get 

po';~(,o _ (~o + 2t~o) A,(,o + p%r(,O z,,(n). 

p0 ~ ( n )  __  ~ 0 A c o ( n )  = -2~'(n)" 

(2.1) 

(2.2) 

(2.3) 

where vO0- -  - div u ~'(n), co(n)= r o t u  e(a), T (n) = Oe(n), F(~n)=divi(n), F(z n) = rot~I(n), F(sn)-Zg(n), X o, F o are Lam~ 

constants. These completely characterize the elastic properties of a homogeneous isotropic 
medium [2]. Here the elements in the rigidity tensor are related to the Lam6 constants by: 
C O o __ o 0 0 o 0 __ 0 0 __ 0 __ 0 __ o __ o o o = CO = 

1311 = C2222 - -  C3333 = ~' - I -  2 ~  0 '  Cl122------ C l 1 3 3  - -  C 2 2 3 3 - -  ~'. ' C l 1 1 2 -  C l 1 1 3  - -  C l 1 2 3 - -  C1213 - -  C2213  = (71323 = C2212 2223 

0 - -  0 0 __ ~0 0 
= C 1 2 2 3  - -  6'3313 C33t2 - -  (33323 = 0 ,  __ ,0  o 0 = G,212 --Gx313 --  G2323 = 2~ ~ I~ii = &~j[ 5~ ~o being the bulk thermal-expansion 

coefficient, K ~ = ~ijK ~ K ~ the thermal conductivity, and i, j = I, 3. All these quantities 
13 

are characteristics of a homogeneous isotropic medium. 

We note that if the initial conditions of (1.9)-(1.11) are chosen such that they satisfy 
homogeneous static equations for thermoelastic equilibrium with constant coefficients 

Cijkl,O 13oij, Kij'~ then u ~ ' O ~ are independent of time t, so F(in)=F~n)(x), F~(n) =F(~n)(x), 

f~n)= f (n) (x), n= I, m We thus have the task of finding the F! n)', F~ n), F~ n) appearing in 

2.1)-(2.3) with the initial conditions 

v(n)(x, to} = 0, v'(n)(x, to) = 0; (2.4) 

r to) = 0, ~(n)(x, to) = 0; (2.5) 

T f n ) ( x ,  to) = 0 
(2.6) 

and the boundary conditions 

v ( n )  3% ('5, z2, o, 0 = o; 

a co (n )  0 ,  t ) = 0 ;  a~-q (~1' ~2, 

( 2 . 7 )  

(2.s) 
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The unknown right sides of 

0 Tm) (zz ,  O, t) = O. @Z--~ x2' 

(2.1)-(2.3) are found from additional information: 

(2.9) 

v on) (z 1, z2, O, ,) = Z~ n) (z 1, x 2, t) - -  div uO(-) (z, ,  z2 ' O, t); 

,o(~) ( ~ ,  ~ ,  O, t) = ~ , 0  ( ~ ,  r t) - -  ~ot .~ (~1, ~ ,  O, t); 

r(,o (~,, ~ ,  o,  t) = x~'o ( ~ ,  ~ ,  0 - s~ (~,' ~ '  o, t). 

(2.10) 

(2.11) 

(2.12) 

The additional information of (2.10)-(2.12) is defined in the following region, as is the 
previous information of (1.14)-(1.16): 

2 2 t / 2  (x tq-~2) < r ,  r > O ;  t o ~ < t < o o  

We note that this problem in turn splits up into three types of inverse problem re- 
quiring sequential solution. 

Problem I. Determination of Fi n) in (2.2), 
(2.11). 

Problem II. Determination of F$ n)" in (2.3), 
(2.12). 

Problem III. Determination of Fi n)" in (2.1), 
(2.10) and the use of the solution to problem II. 

3. We first consider the auxiliary problem IV. We determine the unknown function 
�9 (x)--~<z x,~< ~,0~<~ from the information 

V{5, z~, O, t) = Z (5 ,  %, t), ( ~ + 4 ) z / ' < r ,  r > O  ( 3 . 1 )  

(2.5), and (2.8) from the information of 

(2.6), and (2.9) from the information of 

(2.4), and (2.7) from the information of 

on the solution U(x, t) to the problem 

We differentiate (3.1), 
V(x, t); then as regards V we have 

U--AU=~; 

U(x, to) = O, ~(x, to) = O; 
a 

o~'-~ u ( %  % o, t) = o. 

i 

(3.2) 

(3.3) 

(3.4) 

(3.2), and (3.4) partially with respect to t and put U(x, t) -- 

-- AV = 0; (3.5) 

F(x, to) = 0; (3.6) 

0 ( 3 . 7 )  v ( ,~ ,  ~ , ,  o,  t) = o; 

v(.,, .,, o, 0 = ~(',' ",, ')' ( ' I +  4 )  ~" < r r > O .  (3.8) 

A problem of the type of (3.5)-(3.8).was..considered in [3], where an explicit expression 
for V(x, to) was obtained. However V = U. We therefore substitute this expression into 
(3.2) and use (3.3) and the fact that ~ =' ~(x) to get ~(x) = V(x, to), which enables us to 
use the solution of [3] to get an explicit expression for #(x) at r = =: 

( ~ - ~ - ~ D  ~' (3.9) 
o ( , , ,  ~ ,  ( ~ - , ~ i - 4 ) ' I D  = 4~ " • 

• . . . . . . .  '1 - -  x,~ z - -  z ~  d , I ) ,  

2 dp X(~zP, ~2P, t ) d t ,  
.f (~, I], ~;) = : - - ~ .  t2 - -  P2 -~- 2pll - ~ 

- - o o  0 
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4. We now solve problem I. A natural change of variables after the corresponding 
change in symbols reduces (2.2) to dimensionless form. We have 

; ;~)  - Ao,?) = Fi'p, * = 1, 3, ,~ = t ,  . , ;  

o,?) (x, to) = o, ~ , o  (x, to) = o, 

o) (n) o ,  t) = o ,  
aX 3 .~ (Xl ,  X,~, 

~o?) (~ ,  ~ ,  o, t) = ~[~ (x~, ~ ,  t) - (~ot)~.~ (~ ,  ~ .  o, t )  

( ~ + ~ D ~ / ~ <  ~, r > O .  

We note that problem I splits up into 3m independent problems of the type of IV. The 

determination of F!~ ) amounts to substituting the expressions (i~)(x I, x=, t)--(rot)i~(n)(x1' x2,0, t)) 
instead of X(xl, x2, t) into (3.9). Then the dimensional functions are restored by the 
reverse substitution. 

5. We now solve problem II. We reduce (2.3) to dimensionless form. There is a 
relationship [4] between the solutions to the Cauchy problem for the thermal-conduction 
equation and for the wave equation with an appropriate correspondence between the initial 
conditions. This relationship enables us in our case to get 

,)= ,. (5.1) 

0 

where TCn) cx, t) is the solution to (2.3) reduced to dimensionlesa form with the initial 
and boundary conditions of (2.6) and (2.9), while w(n)(x, t) satisfies the equation 

~(~) _ Aw(~) = F~ ~) ( 5 . 2 )  

with the initial and boundary conditions 

# W(n) O, t) = 0 .  w ( ~  (~, to) = o, ~(~) (~, to) = o, ~ (~, ~ ,  

Equation (5.1) enables us to determine w(n)(x, t) unambiguously from the known functions 

T(n)(x, t) [4], which means that one can determine unambiguously w(n)(x~, x2, 0, t) = 

x(n)(xl, x2, t) for (x~ + x~) I/= < r, r > 0 from the equation 

~o (~, ~, ~) _ ooc~) (~, ~, o, ~) = ~ ~ o~p ( -  ~/4~) x(~) (~,, ~, ~) d~ ( 5 .3  ) 
0 

Here we assume that the corresponding dimensionless variable substitution has been made 

in the functions ~(n) O ~ but for convenience we retain the previous symbols. 

The boundary-value problem for (5.2) is employed with the additional information derived 
from (5.3) and the auxiliary problem IV to determine F!n)(x), n = i, m uniquely. 

6. We consider the solution to problem III. We represent the solution to 

~(~)_(~o + 2~o) A~(~) = _ ~o~r(,~) + ~,~) 

as the sum of the homogeneous solution and two ~articular solutions corresponding to the two 
terms on the right in this equation v(n) = v ~ + v 1(n) = v2(n); the function v ~ = div 
u~ can be taken as known. The function v1(n)(x, t) is found from the solution to 
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"~;1(,o _ (Lo -F 21r176 m~ -F I~~ (n) = 0, n = I," ,,, 

vz(n)(x, ~o) : O, ~(n)(x,  to) = O, 

a v~(n ) O, t) : O, 

where T(n)(x, t) is uniquely determined from (2.3), (2.6), and (2.9) via the known function 

F~ n). Consequently v ~ (n)(x, t) can also be taken as known. 
_(n) 

Now ~z (x), n = i, m are found from 

~ ( " ) ( x ,  to) = O, ~2(")(x, to) = O; 

~'-~v~(~) 0 dx 3 (x 1, x 2, O, -~0 

(6.1) 

(6.2) 

(6.3) 

by reference to the information 

~(n) (xl, x2 ' 0, ~) = Xp ) (x I ,  x~, t) - -  v ~ (xl, x 2, O, t) - -  v Ion) (x I ,  x 2, O, t),  ( 6 . 4 )  

+ < , ,  , > o. 

As system (6.1)-(6.4) splits up into m problems that are analogous to problem IV after 
reduction to dimensionless form, one can also take problem III as having been solved. 

7. We now transfer to the direct determination of the characteristics for a weakly 
inhomogeneous weakly anisotropic thermoelastic medium. Problems I-III have enabled us to 

F~ n), F~ n), n = i, m. If we assume that at the boundary of the half-space x3 determine 0 
the characteristics of this medium and the derivatives of these with respect to x3 coincide 
with the corresponding characteristics of a homogeneous isotropic medium, then f~n) = 

g(n) = 0 for x3 = 0, This condition enables us to determine f(n)(x) uniquely from the 

f(n) ( f(n) ( (n) = F~n) equations rot = F2 n) , div = FI n) . As g , in what follows we can take 

f (n) (n) , g , n = i, m as known. 

B e K~ The thermoelastic characteristics Ciikl'~ ij' lj are found from two systems of linear 

differential equations containing first-order partial derivatives corresponding to (1.7) and 
(1.8). As the initial conditions of (1.9)-(1.11) have been chosen such as to satisfy homo- 
geneous static thermoelastic equations with constant coefficients Cijkt ,0 ~ij'~ Ko0 , we have 

~~ t)~O, ~o(n)(x, t) ~ O, w h i c h  m e a n s  t h a t  u~ = u~ (n) (x) = ~n)  (x), 0 ~ = o~ = ~O0(x), 

(~8 dn)~ [a~(n)~  _tin). 
~ i j ~ z ~ h , t / J - - ~ e O v  ;.~--,i , (7.1) 

8 (n) _ (Kij~, i ) j_g(n) ,  i, ], k, l =  i, 3, n= l , "~ .  (7.2)  

Here the superscript n, as previously, denotes that the quantity corresponds to test n, i.e., 
to boundary-value problem n. 

(x).~j(x) while system (7.2) contains the System (7.1) contains 27 unknown functions Cij~ 

six unknown functions K~.(x). These systems can be simplified considerably by special choice 
lj 

of the functions (p(~), ,(n), which in that case act as coefficients. 

As natural boundary conditions for (7.1) and (7.2) one can take for example the conditions 

C~jkz (x I, x 2, 0) = 0, i, ], k, Z = i, 3---] (7.3) 

8 x o) : o, ~ (~1, "2, o) = o, Kit ( I' x2' (7.4) 

which corresponds to the assumption that the unknown thermoelastic characteristics coincide 
with the corresponding known characteristics of a homogeneous isotropic thermoelastic medium. 
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8. As an example we consider the diagnostic problem in the case where it is known a 
priori that the medium is slightly inhomogeneous but is isotropic. This assumption sub- 
stantially reduces the number of unknown characteristics, of which only four remain: %~, 
~, ~g, K s, since for an isotropic thermoelastic medium 

C l l l  1 ~ -  C222,~ ____ C3333s = ;~s --I- 2~ ~, C~r ____ C1313g : C23238 = 2lie, 

C I l 1 2  - -  Cl113 = Cl123 = C1223 = C2213 = C1323 = C2212 = C22~3 = C121a - -  C3313 = 

C~a~ ~ ~ ~ ~ = ~ __-;~, 1 ~ . = 6 ~ ,  e = ~ i K  ~. = = C3323 = O, C l 1 2 2  : Cl133 C2233 i$ K i J  

Then (7.1) and (7.2) take the form 

e 9 e (n )  n = i ; m ,  [(7. +.~)%1+;~t,o(~)+,,,('~)~1 +1,~(,,~(") ,~(,o~! 
, ~ , ' f 2 , l  " t ' 3 , 3 1 / , 1  [P '  ~'1"1,2 - ~  " r 2 , 1 ] / , 2  - ~  

(.) t. , ,(.) + ("), (") 
\~1,3 -- T2,2 

3 ,3 ]J ,2  "JU Lp' kT2,3 L T3,211,3 - -  ',," T ..,a - -  .I,~ , 

r* k ' r l ,  3 "r3 ,1]] ,  1 q + -~  "~ k 'r2,3 "r3,21~,2 

(n) ,dn)~] ( a~'h(n)~ a -- dn) 
-'{-- /~" (~DI,1 "~- "Y2 , ' ~ ] I , 3  - -  V "r ] '  - -  ' 3  " 

( 8 . 1 )  

We will determine only ~ For this it is sufficient to perform a single test, i.e., n = 
i, and this superscript will subsequently be omitted. 

As initial conditions we take 

~i=z3, %=0, ~3=0,~=0. (8.2) 

It is readily seen that ~x, ~2, %, ~ thus selected satisfy the static equations of thermo- 
elasticity for a medium with constant thermoelaatic characteristics. We substitute (8.2) 
into (8.1) ~o get 

~ - ~ 0=1~, 0=g. ~,s-- fl, ~.i = fa , (8.3) 

As (8.1) has given four equations for the single function ~s, there are constraints imposed 
on fl, f=, f3, and g implied by the very form of (8.3): fi,1 = f3,3, f2 - 0, g - 0. We 
use conditions (7.3), which in this case take the form ~S(xl, x2, 0) = 0, to get 

x 3 

= I ,  ,1) dTl. 
O 

The physical significance of U~ requires that o + P > 0~ 
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